
www.S
tud

yG
uid

eIn
dia

.co
m

An Efficient Transformation for Klee’s Measure Problem in the Streaming
Model

∗ ∗ † † †

Abstract

Given a stream of rectangles over a discrete space, we
consider the problem of computing the total number
of distinct points covered by the rectangles. This can
be seen as the discrete version of the two-dimensional
Klee’s measure problem for streaming inputs. We pro-
vide an (ε, δ)-approximation for fat rectangles. For the
case of arbitrary rectangles, we provide an O(

√
logU)-

approximation, where U is the total number of discrete
points in the two-dimensional space. The time to pro-
cess each rectangle, the total required space, and the
time to answer a query for the total area are polylog-
arithmic in U . Our approximations are based on an
efficient transformation technique which projects rect-
angle areas to one-dimensional ranges, and then uses a
streaming algorithm for the Klee’s measure problem in
the one-dimensional space. The projection is determin-
istic and to our knowledge it is the first approach of this
kind which provides efficiency and accuracy trade-offs in
the streaming model.

1 Introduction

The well-known two-dimensional Klee’s measure prob-
lem (KMP) [7] can be stated as follows: given a col-
lection of m axis-aligned rectangles, how quickly can
we compute the area of their union? This problem has
been studied extensively in the literature [3, 6, 12] with
the best known bounds of O(m logm) and O(m) for the
time and space requirements for an exact answer for m
rectangles.

In this paper, we consider the problem of estimat-
ing the discrete version of the classical two-dimensional
KMP in the streaming model. In this case, the data
stream consists of rectangular elements over a discrete
two-dimensional grid of points, and the task is to ef-
ficiently estimate at any time the number of distinct
grid points occupied by the rectangles that have arrived
so far. Following the literature, we hereafter denote this
problem of finding the number of distinct elements by F0

(referred to as the zeroth frequency moment) [1, 10, 11].

The motivation to study KMP in the streaming model
is due to spatial and temporal data that arise in many
domains such as VLSI layout processing and sensor net-
works. A spatial database, e.g. OpenGIS1, deals with
a large collection of relatively simple geometric objects,
of which rectangles are the most basic types. Moreover,
query processing in the constraint database model [8]
can also be seen as a computation over the set of geo-
metric objects, e.g. [2]. The streaming setting makes
sense in online scenarios of the aforementioned appli-
cations when the workspace is very limited such that
rescanning the entire dataset is not feasible.

A recent work in the F0 of KMP in the streaming
model is due to Tirthapura and Woodruff [11], who
gave an (ε, δ)-approximation algorithm with space as
well as processing time per rectangle (1

ε log(mUδ))O(1),
0 < ε, δ < 1, where U is the total number of grid points
in the two-dimensional space2. Comparing to their al-
gorithm, the algorithm we present here is very simple,
does not depend on m, and exhibits different tradeoffs.

Contributions. We consider a 2n×2n two-dimensional
grid with U = 22n points. The input stream consists of a
set ofm elements Υ = {x0, x1, . . . , xm−1}, where each xi
is an ai×bi, 0 ≤ ai, bi <

√
U, rectangle of discrete points,

and xm−1 is the last element that has arrived so far.
Let A denote the total area (number of distinct discrete
points) of the rectangles in Υ which have arrived so far
in the stream. We present and analyze an algorithm
that returns an estimate est(A) of A.

Our first result is for “fat” rectangles − we say that a
rectangle is fat if the ratio g of its side lengths (i.e., the
aspect ratio) is between 1

c < g < c, where c ≥ 1 is some
constant, e.g. [4]. We give an algorithm which pro-
vides an (ε, δ)-approximation of A (that is, F0). Given
0 < ε, δ < 1, an approximation algorithm is said to
(ε, δ)-approximate F0 if the estimated output F̂0 satis-
fies Pr[|F̂0−F0| < εF0] > 1− δ. Moreover, our stream-
ing approximation algorithm achieves the following time
and space complexities for fat rectangles: (i) the amor-
tized processing time per rectangle is O(1

ε log U
ε log 1

δ);
(ii) the workspace needed is O(1

ε2 logU log 1
δ) bits; and

www.S
tud

yG
uid

eIn
dia

.co
m

(iii) the time to answer a query for F0 is O(1).
For the general case of arbitrary rectangles (the

rectangles with any ratio of side lengths), we present
a streaming algorithm which provides an O(

√
logU)-

approximation of A, such that Ω(1/
√

logU) ≤
est(A)/A ≤ O(

√
logU); the approximation bound holds

with constant probability. Moreover, it ensures that: (i)
the amortized processing time per rectangle is O(logU ·
log logU); (ii) the workspace neededO(log2 U ·log logU)
bits; and (iii) the time to answer a F0 query is O(logU).

The main idea is to transform each input rectan-
gle to an interval (range), such that the estimate of
F0 for the intervals provides an estimate for A. Our
two-dimensional approximation is based on the range-
efficient3 (ε, δ)-approximation algorithm of [10].

Our algorithm implements an efficient proximity
transformation technique of rectangles to ranges based
on a Z-ordering [9] (note that a depth-first traversal of
a quadtree is essentially a Z-ordering). The proximity-
based transformation is deterministic and partitions the
data stream into buckets according to the aspect ratio
of the rectangles. In the general case we use O(logU)
buckets, while for the case of fat rectangles we only use
one bucket. We then apply a range-efficient algorithm
for each bucket instance independently. The algorithm
requires first to normalize a rectangle and then project
it to a range. The normalization helps to preserve the
intersection properties of the rectangles even when they
are transformed to ranges, which further helps to obtain
good approximations. In the analysis, we bound the er-
ror due to normalization and also due to the projection
on ranges.

To the best of our knowledge, this is the first transfor-
mation algorithm for KMP that improves significantly
on the previous solutions for fat rectangles [4, 11].

Related Work. For the classical (non-streaming)
KMP, Bentley [3] described a deterministic time-
optimal O(m logm) time and O(m) workspace solution.
This solution is based on reducing the problem to m
one-dimensional KMPs [7] by sweeping a vertical line
across the area. Some recent work tried to minimize
the space and time requirements for the efficient com-
putation of the area of the union, e.g. [6, 12]. Particu-
larly, Chen and Chan [6] gave an algorithm that runs in
O(m3/2 logm) time but needs O(

√
m) extra workspace.

Vahrenhold [12] minimizes the extra space to O(1) with
the same running time. All the aforementioned solu-
tions for KMP are deterministic and compute the ex-
act area. Moreover, no deterministic algorithm has im-
proved the best known bounds of O(m logm) and O(m)
for the time and space. Therefore, recent focus has been
on approximation algorithms. To this end, Bringmann

3

and Friedrich [5] gave a (1±ε)-approximation algorithm
for any 0 < ε < 1. However, it has space complexity
that is still linear in the size of the input.

A difficulty in obtaining tighter bounds on time and
space complexities of KMP stems from the fact that
[3, 6, 12] use explicit sorting algorithms and tree-based
data structures (e.g. quadtrees) to handle rectangles,
where such data structures need at least Ω(logm) time
to process an individual element using O(m) space. A
natural question that arises is whether tighter bounds
on time and space requirements are achievable. Ac-
cording to the literature, computing F0 exactly requires
space linear in the number of distinct values [1]. There-
fore, we opt to design streaming approximation algo-
rithms for KMP that require very limited space.

Outline of Paper. We give a KMP streaming algo-
rithm in Section 2 and discuss the normalization in Sec-
tion 3. In Section 4, we give an algorithm to transform a
rectangle to a normalized approximation based on a Z-
ordering. We analyze the transformation algorithm for
the one bucket case (fat rectangles) in Section 5 and do
the same for many buckets (general case) in Section 6.
We conclude the paper in Section 7. Proofs are deferred
to the full version due to space limitations.

2 KMP Streaming Algorithm

Algorithm 1 is an approach for estimating the total
number of distinct points A covered by a streaming set
Υ of m rectangles in Z2

n. The basic idea is to transform
each rectangle to one or more one-dimensional ranges
and then use a range-efficient algorithm to estimate the
number of discrete points used by the stream of ranges.
The challenge is to perform the transformation in such a
way that the estimate from the ranges is a good approx-
imation of A. In order to achieve good approximations,
we first normalize the rectangles, by aligning them into
appropriate space points whose coordinates are multi-
ples of 2. We then separate the rectangles into different
buckets according to their normalization. Each bucket
has range mapping characteristics which help to accu-
rately estimate the respective covered areas. We run a
range-efficient algorithm to each bucket, which we com-
bine to obtain the resulting estimate for A.

Algorithm 1 initializes χ buckets B0, . . . ,Bχ−1 of nor-
malized rectangles in Z2

n. Each rectangle x ∈ Υ is trans-
formed to one or more normalized rectangles y′1, y

′
2, . . .

whose union is an approximation of x. Then, each
y′j is inserted into some appropriate bucket Bij . Each
y′j ∈ Bij is immediately mapped to a one-dimensional
range using a projection function appropriate for Bij .
In this way, bucket Bij produces a stream of ranges.
Some known range-efficient (ε, δ)-approximation algo-
rithm is applied to the stream of ranges to find an es-

www.S
tud

yG
uid

eIn
dia

.co
m

Algorithm 1: A rectangle area estimation algo-
rithm

Input: A streaming set Υ of m rectangles in Z2
n;

Output: An estimate est(A) of total number of
distinct discrete points A covered by the
rectangles in Υ;

1 Initialization:
2 Define χ buckets B0, . . . ,Bχ−1 of normal rectangles in

Z2
n (initially the buckets are empty);

3 When a new rectangle x ∈ Υ arrives:
4 Normalization: Transform x into a sequence of

normal rectangles y′1, y
′
2, . . ., and then assign each y′j

to some appropriate bucket Bij ;
5 One-dimensional mapping: Map each y′j to a range

rj using an appropriate projection based on Bij ;
6 Apply a range-efficient (ε, δ)-approximation

algorithm to update with respect to rj an estimate of
A′ij , the total area (total discrete points) of the

normal rectangles in Bij ;
7 Maintain Emax = maxi est(A′i) and

Esum =
∑χ−1
i=0 est(A′i); the maximum and the sum

among the χ bucket estimates;
8 When an estimate for F0 is asked for:

9 Return est(A) =
√
EmaxEsum;

timate of A′i, the total number of discrete points occu-
pied by the normalized rectangles in Bi. Algorithm 1
then maintains Emax and Esum, the maximum and the
sum among all the bucket estimates, respectively. When
an estimate est(A) is asked for, the algorithm returns
est(A) =

√
EmaxEsum.

One can apply any range-efficient (ε, δ)-
approximation algorithm for F0 on each bucket
Bi (step 6). Here, we use the Hits algorithm of [10]. It
has the following time and space complexities for F0

for each bucket Bi, where U = 22n.

Theorem 1 (Pavan and Tirthapura [10]) Given
0 < ε < 1 and 0 < δ < 1, algorithm Hits (ε, δ)-
approximates F0 with space complexity O(1

ε2 logU log 1
δ)

bits, amortized time taken to process a range
O(log U

ε log 1
δ), and time taken to process a query

for F0 at any time O(1).

In section 4 we give a transformation Proximity of rect-
angles to ranges which will enable us to provide two
versions of Algorithm 1, one with a single bucket (fat
rectangles), and the other with multiple buckets (arbi-
trary rectangles). We continue with first describing the
normalization that we use.

3 Normalization

We first start with some basic definitions for ranges and
their normalizations, and then we extend the definitions
for normalized rectangles.

Ranges. For integer n ≥ 0, let Zn = {0, 1, . . . , 2n −
1} ⊂ Z be a one-dimensional space of 2n discrete integer
points. A range (or interval) r = [p1, p2], where 0 ≤
p1 ≤ p2 < 2n, consists of all the points between p1 and
p2. Denote with |r| = p2 − p1 + 1 the size of range r
which is the number of points in it.

The α-normal subset of Zn, denoted Wα
n, for integer

0 ≤ α ≤ n, consists of every (2α)th element of Zn,
namely, Wα

n = {p ∈ Zn : p = i2α ∧ i ∈ Z}. We
will refer to the elements of Wα

n as normal points. The
normal subset Wα

n induces 2n−α normal ranges of size
2a such that each starts at a normal point. We will also
use the notation Wα

n to denote the normal ranges. Let

Wn =
⋃n−1
α=0 Wα

n denote the set of all possible normal
ranges (and respective normal points).

Rectangles. All the definitions for one-dimensional
space Zn extend to the two-dimensional space Z2

n =
Zn × Zn of discrete integer points. Space Z2

n can be
viewed as an array of points such that for any point
(p, q) ∈ Z2

n, p corresponds to a row and q to a column
(there are 2n rows and 2n columns). The upper left cor-
ner of Z2

n is point (0, 0), and the lower right corner is
point (2n − 1, 2n − 1). (See the figure below.)

A rectangle x = 〈(p1, q1), (p2, q2)〉 is a subset of Z2
n,

where p1, p2, q1, q2 ∈ Zn with p1 ≤ p2 and q1 ≤ q2, such
that x contains all points {(p, q) : p1 ≤ p ≤ p2 and q1 ≤
q ≤ q2}. Note that (p1, q1) is the north-west corner of
x, while (p2, q2) is the south-east corner. We say that
x is a a× b rectangle with side lengths a = p2 − p1 + 1
and b = q2 − q1 + 1. We denote with |x| = a · b the size
of rectangle x which is the number of points in it.

x’

x

For any integers
0 ≤ α, β ≤ n, define
the (α, β)-normal subset
Wα,β
n = Wα

n ×Wβ
n ⊆ Z2

n.
Each element (p, q) ∈
Wα,β
n is a normal point

for which it holds p = i2α

and q = j2β , for integers i
and j. In other words, set
Wα,β
n selects every (2α)th

point in the vertical direc-
tion and every (2β)th point in the horizontal direction
of Z2

n. Each normal point w ∈ Wα,β
n corresponds to a

2α × 2β normal rectangle, whose north-west corner is
w. We will also use the notation Wα,β

n to denote the
set of normal rectangles. Let Wn =

⋃n
α=0

⋃n
β=0 Wα,β

n

denote the set of all possible normal rectangles (and
respective normal points). The figure above shows a
(1, 2)-normal subset and the respective 21 × 22 normal
rectangles W1,2

4 of Z2
4.

Lemma 2 Any a × b rectangle x ∈ Z2
n, contains an

a′ × b′ normal rectangle x′ ⊆ x with 1 ≤ |x|/|x′| ≤ 16,
such that 1 ≤ a/a′ ≤ 4 and 1 ≤ b/b′ ≤ 4.

www.S
tud

yG
uid

eIn
dia

.co
m

Given a rectangle x, the internal normal rectangle x′ of
Lemma 2 can be computed in constant time. See the fig-
ure above for an example rectangle x and its respective
internal normalized rectangle x′.

Aspect Ratios. The aspect ratio of an a × b rectan-
gle is b

a . Each normal rectangle induced by Wα,β
n has

an aspect ratio of 2β−α. All rectangles induced by
Wα+i,β+i
n (for integer i) have aspect ratio 2β−α. Thus,

given g, 0 ≤ g ≤ n, Wα,g+α
n corresponds to normal

rectangles of aspect ratio 2g and size 2α × 2g+α. Let

W(g,+)
n =

⋃n−g
α=0 Wα,g+α

n denote the normal rectangles of

aspect ratio 2g. Similarly, let W(g,−)
n =

⋃n−g
α=0 Wg+α,α

n

denote the normal rectangles of aspect ratio 2−g. Let

W(+)
n =

⋃n
g=0 W

(g,+)
n be the set of all possible nor-

mal rectangles with aspect ratio at least one. Let

W(−)
n =

⋃n
g=1 W

(g,−)
n be the set of all possible normal

rectangles with aspect ratio < 1.

Union of Rectangles. In our
KMP approach, given a rect-
angle xi we compute inside it
a yi which is either a normal
rectangle (for example given
by Lemma 2), or yi is a rect-
angle that consists of multiple
normal rectangles (as will be
the case of Section 5). Con-
sider a sequence of rectangles
x0, x1, . . . , xm−1. Denote the union of these rectan-
gles as X = x0 ∪ x1 ∪ · · · ∪ xm−1 and the area of
X as |X|. Consider also a sequence of rectangles
y0, y1, . . . , ym−1, where each yi is contained in xi, with
union Y = y0 ∪ y1 ∪ · · · ∪ ym−1. We are interested in
estimating the area of X based on calculating the area
of Y .

Let x be an a × b rectangle (see the figure above)
with a · b discrete points in Z2

n, 0 ≤ a, b < 2n. Denote
by |x| the area of x, namely, |x| = a · b. Let y denote an
a′ × b′ rectangle in x. Write a = atop + a′ + abottom and
b = bleft + b′ + bright, where a = a′cx,v and b = b′cx,h,
for some integers cx,v, cx,h ≥ 1. Note that |x| = a′cx,v ·
b′cx,h = cx|y|, where cx = cx,v · cx,h.

We define rectangle ztop of dimensions atop × b′ that
resides on top of y. Similarly, we define zbottom as an
abottom × b′ rectangle that resides on the bottom of y.
Symmetrically, we define zleft and zright as the a′×bleft
and a′ × bright rectangles that reside on the left and
right of y. Note that ztop, zbottom, zleft, and zright are
all in x. Finally, we define the cross polygon z to be:
z = y ∪ ztop ∪ zbottom ∪ zleft ∪ zright.

Given X and Y , we define the corresponding sequence
of cross polygons z0, z1, . . . , zm−1, with union Z = z0 ∪
z1 ∪ · · · ∪ zm−1. Denote cv = maxi cxi,v, and ch =
maxi cxi,h. It can be shown that |Z| = α|Y |, for 1 ≤ α ≤

2cv+2ch−3. It can also be shown that |X−Z| = β|Z|,
for 0 ≤ β ≤ 2 ·min{cv, ch} − 2. Therefore, we obtain:

Lemma 3 |X| = γ|Y |, where 1 ≤ γ ≤ (2cv + 2ch −
3)(2 ·min{cv, ch} − 1).

4 Proximity Transformation

Here we describe the Proximity transformation which
deterministically maps each normal rectangle to a one-
dimensional range based on a Z-ordering.

Without loss of generality consider a bucket Bg which

contains normal rectangles from W(g,−)
n . For the one-

dimensional mapping (step 5 of Algorithm 1), we show
how Algorithm Proximity takes a normalized rectangle
x′ ∈ Bg and maps it to a linear interval (range) r in a
manner that preserves the intersection properties of the
rectangles of Bg.

(a) (b)

Figure 1: A Z-curve for aspect ratio (a) 1, (b) 1/4

Define f
(0,+)
n : Z2

n −→ Z2n as the well-known Z-
ordering [9] (see Fig. 1a). The figure shows the Z-values
for the case g = 0 of points for the two dimensional
space 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 (shown in binary). In-
terleaving the binary coordinate values gives binary Z-
values and connecting the Z-values in their order from
the lowest (0000) to the highest (1111) produces the
recursively Z-shaped curve, i.e., a Z-order. For aspect

ratio < 1, define f
(g,−)
n : Z2

n −→ Z2n as follows. Parti-
tion Z2

n into 2g contiguous vertically aligned elements,
then connect them in the order provided by a Z-ordering
(see Fig. 1b). For aspect ratio > 1, partition as hori-

zontally aligned 2g elements. Note that f
(g,−)
n preserves

the intersection properties of normalized rectangles of

W(g,−)
n , that is, for any x′1, x

′
2 ∈ W(g,−)

n , |x′1 ∩ x′2| =

|(f (g,−)
n (x′1)) ∩ (f

(g,−)
n (x′2))|. Similarly, f

(g,+)
n preserves

the intersection properties of normalized rectangles in

W(g,+)
n .
Each element i of Z2n = {0, 1, · · · , 22n − 1} (the

codomain of f
(g,−)
n (f

(g,+)
n)) is a 2n-bit binary represen-

tation of i. The domain Z2
n of f

(g,−)
n (f

(g,+)
n) consists

of doublets (p, q), where p, q ∈ Zn. So, each (p, q) ex-
pressed as the concatenation of the binary representa-

www.S
tud

yG
uid

eIn
dia

.co
m

tions of p and q is a 2n-bit quantity. This 2n-bit num-
ber (belonging to Z2n) is called the row-major index of

(p, q). Thus, function f
(g,−)
n (f

(g,+)
n) can be viewed as

the transformation of one 2n-bit number into another
2n-bit number.

Since n = O
(
log |Z2

n|
)
, the function f

(g,−)
n (·)

(f
(g,+)
n (·)) can be computed using a logarithmic-size (al-

beit non-standard) operation that could be assumed to
be computable in constant time. Therefore, we obtain:

Lemma 4 For any normalized rectangle x ∈ Bg,

f
(g,−)
n (x) (f

(g,+)
n (x)) is a set of |x| contiguous integers

(range) in Z2n. This ordering can be computed in con-
stant time for a given rectangle and preserves the inter-
section properties of rectangles of Bg.

5 One Bucket

We describe how to efficiently estimate the area of a
stream with fat rectangles. We first describe the spe-
cial case of a stream of squares Υ = {x0, x1, . . . , xm−1}
and then we extend the result to include fat rectan-
gles with aspect ratios other than 1. The normalization
(step 4) of Algorithm 1 uses only one bucket B which
contains normal rectangles of aspect ratio 1 (namely,

normal squares in W(0,+)
n). Using the following result

it is possible to transform each square x ∈ Υ into a set
of normal squares which are then used to estimate the
total area A of the stream Υ.

Lemma 5 Given an a × a square x and η, 0 < η ≤ 1,
there is an internal a′×a′ square x′ which consists of at
most c/η normal squares (of possibly various sizes), for
some positive constant c, such that a(1− η) ≤ a′ ≤ a.

In Algorithm 1, since est(A) =
√
EmaxEsum and we

use only one bucket, we get Emax = Esum. Thus, the
result of the algorithm is directly the output of Hits
(Theorem 1) on bucket B. For each square xi ∈ Υ, let
x′i be the respective square given by Lemma 5. Suppose
that the set Υ′ = {x′0, x′1, . . . , x′m−1} has total area A′.
Each xi is replaced with c/η normal squares that cover
the respective x′i (as specified by Lemma 5), and fur-
ther each such normal square is projected to a range
through the Proximity transformation of Section 4. In
other words, Hits returns an (ε′, δ) estimate on A′, for
0 < ε′, δ < 1. This is then used to obtain an estimate
of A. Using Lemma 3 we can relate the areas of A and
A′ through η, since cv, ch ≤ 1/(1 − η). Finally, by ap-
propriately substituting ε′ and η with linear functions
of ε, we obtain an (ε, δ)-approximation for est(A). The
space complexity and query time remain asymptotically
the same as in Hits, while the time complexity increases
by a factor of c/η (due to the number of normalized
rectangles inside each x′i). Therefore, we can obtain:

Theorem 6 For the special case of a stream Υ of
squares, given 0 < ε, δ < 1, Algorithm 1 (ε, δ)-
approximates the area of A with space complexity
O(1

ε2 logU log 1
δ) bits, amortized time taken to process

a square O(1
ε log U

ε log 1
δ), and time taken to process a

query for A at any time O(1).

Theorem 6 can be also applied to fat rectangles. Each
fat rectangle of aspect ratio h can be converted to a
stream of at most h+ 1 (or 1/(h+ 1) if h < 1) squares
that cover the rectangle area. Thus, we can use the
approach above for a constant factor increase in time.

6 Many Buckets

Here we give an analysis of Algorithm 1 for the general
case of arbitrary input rectangles. Section 6.1 estab-
lishes a relation of (ε, δ)-estimators to ξ-approximations.

6.1 Area Estimation

Consider a set Υ = {x0, x1, . . . , xm−1} of m rectan-
gles in Z2

n, such that each xj is an aj × bj rectan-

gle, 0 ≤ aj , bj <
√
U , with ajbj discrete points, and

total area A. Partition Υ arbitrarily into χ subsets
{Υ0,Υ1, . . . ,Υχ−1} where Υi has mi rectangles and

m =
∑χ−1
i=0 mi. Let Ai denote the area of the union

of the rectangles in Υi. In each xj of size aj × bj , let
x′j denote an a′j × b′j rectangle contained in xj , where
a′j ≤ aj and b′j ≤ bj Define Υ′,Υ′i, A

′, and A′i corre-

spondingly. Let 0 < ∆1 ≤ A′

A ≤ ∆2 ≤ 1; we fix ∆1 and
∆2 later in Section 6.2.

Let us assume that there is an (ε, δ)-estimator algo-
rithm A (similar to Theorem 1) that computes an es-
timate est(A′i) of the area in the rectangles in Υ′i and
returns: (i) Emax = maxi est(A′i), the maximum among

est(A′i), 0 ≤ i ≤ χ − 1, and (ii) Esum =
∑χ−1
i=0 est(A′i),

the sum of each est(A′i), 0 ≤ i ≤ χ − 1. The algorithm
A then uses the estimates Emax and Esum to estimate
quantity est(A) of A as est(A) =

√
EmaxEsum. Define

relative error as % = |est(A)−A|
A . We have that:

Lemma 7 The (ε, δ)-estimator algorithm A computes
an estimate est(A) of the total area A such that A · ε1 ≤
est(A) ≤ A · ε2 with probability (1 − δ)χ, where χ is
the number of blocks in a partition of set Υ of input

rectangles, ε1 = ∆1(1−ε)√
χ , ε2 = ∆2(1 + ε)

√
χ, and 0 <

∆1 ≤ ∆2 ≤ 1.

6.2 Approximation

We project each bucket Bi to Z2n (as described in Sec-
tion 4) and apply a range-efficient algorithm for F0. Let
Υi denote the original rectangles in Υ that are projected
with bucket Bi, and let Υ′i denote the normal rectan-
gles assigned to Bi (according to their aspect ratio).

www.S
tud

yG
uid

eIn
dia

.co
m

Thus, Υ = {Υ0,Υ1, . . . ,Υχ−1}, and after normaliza-
tion Υ′ = {Υ′0,Υ′1, . . . ,Υ′χ−1}. For each x ∈ Υ we use a
single internal normal rectangle x′ as given by Lemma
2, which is assigned to a bucket Bi according to its as-
pect ratio. Let Ai (resp. A′i) denote the total area of
Υi (resp. Υ′i) . This results to Ai/A

′
i = γ, γ ≤ 91, from

the area analysis in Lemma 3.
The Hits algorithm (Theorem 1) yields an (ε, δ)-

approximation of F0 for the ranges in each Bi. The
estimate est(A) of the total area A of Υ using Emax and
Esum is computed from the (ε, δ)-estimates of A′i given
by the Hits algorithm for each bucket.

From Lemma 7, substituting ∆1 = 1/γ and ∆2 = 1,
Algorithm 1 computes an estimate est(A) of the total
area A of the set Υ of m rectangles mapped to χ buckets

such that A · ε1 ≤ est(A) ≤ A · ε2, where ε1 = 1
γ

(1−ε)√
χ

and ε2 = (1 + ε)
√
χ with probability (1 − δ)χ. We set

χ = 2n + 1 = logU + 1 (the total number of normal

aspect ratios), and hence, ε1 = 1
γ

(1−ε)√
logU+1

and ε2 =

(1 + ε)
√

logU + 1 with probability (1− δ)logU+1.
Algorithm 1 reaches est(A) with space complexity

O(1
ε2 log2 U log 1

δ) bits, amortized time taken to process

a rectangle O(log U
ε log 1

δ), and the time taken to pro-
cess a query for F0 is O(logU). These follow from The-
orem 1 by combining the space and time complexities
of logU + 1 instances of Hits. In comparison to Hits,
the space needed by our approximation algorithms in-
creases by a factor of O(logU) due to the logU + 1
buckets. The amortized time taken to process a rectan-
gle remains the same as we need to run Hits on only a
single bucket for that rectangle. Since it is necessary to
compute the median of logU + 1 instances of Hits, one
for each bucket, the time taken to process a query for
A increases by a factor of O(logU). By setting ε = 1/2
and δ = 1

logU+1 , our algorithm approximates est(A),

such that Ω(1/
√

logU) ≤ est(A)/A ≤ O(
√

logU), with
constant probability.

Theorem 8 Algorithm 1 O(
√

logU)-approximates A
with constant probability and achieves space complexity
O(log2 U · log logU) bits, amortized time to process a
rectangle O(logU · log logU), and time taken to process
a query at any time O(logU).

The asymptotic notation O(
√

logU) hides large con-
stants, due to the fact that for each xi we use some
internal normalized square. We can improve the con-
stants and bring them down to 1, by tiling each xi with
poly-log number of normalized rectangles as specified by
the lemma below. This has the side effect of increasing
the time complexity by a poly-log factor which can be
traded-off for the enhanced accuracy.

Lemma 9 A rectangle r can be (1 − η)-approximately
tiled with 4 log2 1

η2 normal rectangles, for 0 < η ≤ 1/2.

7 Conclusions

We presented a randomized approximation algorithm
with poly-log bounds on time and space complex-
ity with approximation factor 1 ± ε for fat rectangles
and O(

√
logU) for general rectangles for the KMP

in the streaming model. Our technique will give an
O((
√

logU)d−1)-approximation for the general case of
d-dimensional KMP. For future work, it would be inter-
esting to explore techniques that will reduce the current
approximation factor O(

√
logU) for general rectangles

to O(1) or 1 ± ε, using deterministic transformations.
Moreover, it would be interesting to evaluate our algo-
rithm experimentally in a real-time setting.

Acknowledgements: We are indebted to Srikanta
Tirthapura for helpful suggestions for the problem.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space com-
plexity of approximating the frequency moments. In
STOC, pages 20–29, 1996.

[2] M. Benedikt and L. Libkin. Exact and approximate
aggregation in constraint query languages. In PODS,
pages 102–113, 1999.

[3] J. Bentley. Algorithms for Klee’s rectangle problems,
Unpublished notes, Computer Science Department,
Carnegie Mellon University. 1978.

[4] K. Bringmann. An improved algorithm for Klee’s mea-
sure problem on fat boxes. Comput. Geom. Theory
Appl., 45(5-6):225–233, 2012.

[5] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. Comput. Geom. Theory Appl., 43(6-
7):601–610, 2010.

[6] E. Y. Chen and T. M. Chan. Space-efficient algorithms
for Klee’s measure problem. In CCCG, pages 27–30,
2005.

[7] V. Klee. Can the measure of ∪[ai, bi] be computed in
less than O(n logn) steps? American Mathematical
Monthly, 84(4):284–285, 1977.

[8] G. Kuper, L. Libkin, and J. Paredaens. Constraint
Databases. Springer, 1st edition, 2010.

[9] J. A. Orenstein and T. H. Merrett. A class of data
structures for associative searching. In PODS, pages
181–190, 1984.

[10] A. Pavan and S. Tirthapura. Range-efficient counting
of distinct elements in a massive data stream. SIAM J.
Comput., 37(2):359–379, 2007.

[11] S. Tirthapura and D. P. Woodruff. Rectangle-efficient
aggregation in spatial data streams. In PODS, pages
283–294, 2012.

[12] J. Vahrenhold. An in-place algorithm for Klee’s mea-
sure problem in two dimensions. Inf. Process. Lett.,
102(4):169–174, 2007.

